STATISTICAL SCIENCES (STA)

A major in statistics or applied statistics can be achieved by satisfying the requirements listed for the bachelor of science. Lower division students are urged to consult a member of the departmental faculty before enrolling in courses other than those satisfying Division V requirements.

To declare a major in either Statistics or Applied Statistics, a student must have completed STA 112, and either MTH 112 or MTH 121, with AP credit or by earning a grade of C or higher in each course. A minimum grade point average of 2.0 in courses which comprise a major or minor in the department is required for graduation with any major or minor which the department offers. Students may major in Mathematical Business and minor in statistics, but no courses which are electives for the Mathematical Business major may be counted as electives for the Statistics minor. However, courses which are required for the Mathematical Business major (e.g. STA 310) may be counted as electives for the Statistics minor. Students may not minor in statistics and also major in either statistics or applied statistics.

The department regularly schedules activities in statistics for students that enhance the course offerings. Examples are:

- the American Statistical Association DataFest
- Local chapter of the AWM (American Women in Mathematics)
- data science and hackathon events
- meetings of the mathematics and statistics club
- seminars and courses which build upon the regularly scheduled course offerings
- student research with faculty
- The Math and Stats Center provides an opportunity for students to receive tutoring in all MTH and STA courses throughout the year. Opportunities to serve as a tutor are also available.

Students who are enrolled at Wake Forest may not take courses in statistics at other institutions to satisfy divisional requirements.

Contact Information
Department of Statistical Sciences (https://stats.wfu.edu/)
Manchester Hall 127, Box 7388
Phone 336-758-5300

Programs

Majors

Minors
- Statistics, Minor (https://bulletin.wfu.edu/undergraduate/departments-programs/statistical-sciences/minor-statistics/)

Certificate

Courses

Statistical Sciences (STA)

STA 107. Explorations in Statistics. (3 h)
Introduction to statistical literacy and the role of statistics in settings such as elections, medicine, sports, and the sciences. Topics vary by instructor. (D, QR)

STA 111. Elementary Probability and Statistics. (4 h)
Data collection and visualization, exploratory analysis, introductory probability, inference techniques for one variable, and statistical literacy. Lab. (D, QR)

STA 112. Introduction to Regression and Data Science. (3 h)
A foundational course in regression and data science. The course introduces data analysis through statistical computing in R, least-squares and logistic regression, model selection, and data visualization. P-STA 111 or POI. (D, QR)

STA 175. Competitions. (1-3 h)
Seminar designed for students who wish to participate in statistics and/or data analysis competitions. Not to be counted toward any major or minor offered by the department. May be repeated for credit. Pass/Fail only.

STA 214. Applied Generalized Linear Models. (3 h)
A course in statistical models, emphasizing models for count and categorical data, an exploration of likelihood-based modeling, and an introduction to mixed effects models. These models are applied using R. P-STA 112 and MTH 111. (QR, D)

STA 247. Design and Sampling. (3 h)
Experimental designs, observational studies, survey design and estimation with stratified, cluster, and other sampling schemes. P-STA 112 or POI. (D)

STA 279. Topics in Statistics. (1-3 h)
Topics in statistics not considered in regular courses, or which continue study begun in regular courses. Content varies.

STA 310. Probability. (3 h)
Distributions of discrete and continuous random variables, sampling distributions. Covers much of the material on the syllabus for the first actuarial exam. Also listed as MTH 357. P-MTH 112 or POI. (D)

STA 311. Statistical Inference. (3 h)
Derivation of point estimators, hypothesis testing, and confidence intervals, using both frequentist and Bayesian approaches. P-STA 310 or MTH 357 or POI. (D)

STA 312. Linear Models. (3 h)
Theory of estimation and testing in linear models. Topics include least squares and the normal equations, the Gauss-Markov Theorem, testing general linear hypotheses, model selection, and applications. P-MTH 121 or 205, and STA 310 or MTH 357. (D)
STA 352. Networks: Models and Analysis. (3 h)
A course in fundamental network theory concepts, including measures of network structure, community detection, clustering, and network modelling and inference. Topics also draw from recent advances in the analysis of networks and network data, as well as applications in economics, sociology, biology, computer science, and other areas. Also listed as MTH 359. P-MTH 117 or MTH 121 or MTH 205, and one course in STA at the 200 level or above. (D)

STA 362. Multivariate Statistics. (3 h)
Multivariate and linear methods for classification, visualization, discrimination, and analysis of high dimensional data. P-STA 112 and MTH 121 or MTH 205, or POI. (D)

STA 363. Introduction to Statistical Learning. (3 h)
An introduction to supervised learning. Topics may include lasso and ridge regression, splines, generalized additive models, random forests, and support vector machines. P-STA 112 and MTH 121 or 205, or POI, experience with statistical computing. (D)

STA 364. Computational and Nonparametric Statistics. (3 h)
Computational and Nonparametric Statistics (3 h). Computationally intensive statistical methods. Topics may include simulation, Monte Carlo integration and Markov Chain Monte Carlo, sub-sampling, non-parametric estimation and regression. Students will make extensive use of statistical software throughout the course. P-STA 112, and either STA 310 or MTH 357, or POI. (D)

STA 365. Applied Bayesian Statistics. (3 h)
An introduction to Bayesian statistics and computational methods for performing Bayesian data analysis. Topics may include conjugate distributions, objective prior distributions, Bayesian inference, hierarchical models, and Markov chain Monte Carlo methods. P - STA 112 and STA 310. (QR, D)

STA 368. Time Series and Forecasting. (3 h)
Methods and models for time series processes and autocorrelated data. Topics include model diagnostics, ARMA models, spectral methods, computational considerations, and forecasting error. P - STA 212112, and either STA 310 or MTH 357, or POI. (D)

STA 379. Advanced Topics in Statistics. (1-3 h)
Topics in statistics not considered in regular courses or which continue study begun in regular courses. Content varies.

STA 381. Applied Statistics Capstone. (2 h)
Students integrate knowledge acquired throughout their degree program. Topics include developing a research plan, statistical writing, data visualization, and data ethics. Students will communicate statistical results to both technical and non-technical audiences through written reports and oral presentations. Offered fall semester. P-senior STA major.

STA 382. Applied Statistics Capstone. (1.5 h)
A capstone course for students in the B.S. in Applied Statistics. Topics include developing a project plan, team work skills, statistical writing, data visualization, and data ethics. Students will communicate statistical results to both technical and non-technical audiences through written reports and oral presentations. P-STA 363 and junior or senior B.S. in Applied Statistics major. Cross listed as STA 381. Students in the B.S. in Statistics may request entry into this course by contacting the professor, and may be admitted if there is space available.

STA 383. Individual Study. (1-3 h)
A course of independent study directed by a faculty adviser. By prearrangement.

STA 391. Honors Research I. (1 h)
Independent study or research directed by a faculty adviser by prearrangement with the adviser.

STA 392. Honors Research II. (1 h)
Preparation of a paper, followed by an oral presentation based upon work completed in STA 391.

Faculty
Chair Robert Erhardt
Professors Kenneth Berenhaut, Robert Erhardt
Associate Professors Daniel Beavers, Staci Hepler
Assistant Professors Leonardo Cella, Ciaran Evans, Sarah Lotspeich, Lucy D'Agostino McGowan, Emily Huang, Sneha Jadhav
Associate Teaching Professors Nicole Dalzell, Lynne Yengulalp
Teacher-Scholar Postdoctoral Fellows Eva Murphy
Visiting Assistant Professors Shantanu Awasthi, Wimarsha Jayanetti, Premathilaka Methasarani, Yasin Rabby